Loop Analysis

Example

For the circuit shown below find the current flowing through the resistor *R*B. In addition find the power supplied by the voltage source.

Results from MATLAB

The current through the resistor RB is 0.037037 A. The power supplied by voltage source is 4.7531 W.

Loop Analysis (AC Analysis)

Example

For the circuit shown below find the current i1(t) and the voltage uC(t).

Results from MATLAB

From the MATLAB results, the time domain current $i_1(t)$ is $i_1(t) = 0.388 \cos (10^3 t + 15.02^\circ)$ A and the time domain voltage $u_c(t)$ is $u_c(t) = 4.218 \cos (10^3 t - 40.86^\circ)$ V

Nodal Analysis

Example

For the circuit shown below find the nodal voltages U_1 , U_2 and U_3 .

Circuit with Nodal Voltages

Results from MATLAB

The nodal voltages U1, U2 and U3 are U =

404.2857 350.0000 412.8571

Nodal Analysis (AC Analysis)

Example

For the circuit shown below find the voltage $u_3(t)$ when $R_1 = 20 \Omega$, $R_2 = 100 \Omega$, $R_3 = 50 \Omega$, $L_1 = 4 \text{ H}$, $L_2 = 8 \text{ H}$, $C = 250 \mu\text{F}$, $u_3(t) = 8 \cos{(\omega t + 15^\circ)} \text{ V}$ and $\omega = 10 \text{ rad/s}$.

RLC Circuit with Sinusoidal Excitation

Results from MATLAB

voltage U_3 : magnitude = 1.8504 V angle = -72.4533°

From the MATLAB results, the time domain voltage $u_3(t)$ is $u_3(t) = 1.85 \cos (\omega t - 72.45^\circ) \text{ V}$

Resonance

Example

For the circuit shown below with using MATLAB plot the frequency dependency of the current magnitude and find the resonance frequency ω_r when $R=5~\Omega$, L=20 mH, $C=400~\mu F$ and $u_s(t)=100~\sin{(\omega~t)}~V$.

Results from MATLAB

The resonance frequency is wr = 353.5534

Transient Analysis

Example

For the circuit shown below find the voltage $u_{\mathbb{C}}(t)$ between the interval 0 to 0.4 s, assuming that $u_{\mathbb{C}}(0) = 0$ V. Use a numerical solution to the differential equations and analytical solution, when $R = 10 \text{ k}\Omega$, C = 10 µF and $U_{\mathbb{S}} = 10 \text{ V}$.

Results from MATLAB

Transient Analysis

Example

For the circuit shown below find the current $i_L(t)$ and the voltage $u_C(t)$. Use a numerical solution to the differential equations, when $R=10~\Omega$, L=31.25~mH, $C=50~\mu\text{F}$ and $I_S=2~\text{A}$. The switch has been opened for a long time.

Results from MATLAB

Transient Analysis

Example

For the circuit shown below find the currents $i_{L1}(t)$, $i_{L2}(t)$ and the voltages $u_{C1}(t)$, $u_{C2}(t)$. Use a numerical solution to the differential equations, when $R_0 = 100 \text{ k}\Omega$, $R_1 = 300 \Omega$, $R_2 = 10 \text{ k}\Omega$, $L_1 = 0.01 \text{ mH}$, $L_2 = 10 \text{ mH}$, $C_1 = 10 \text{ µF}$, $C_2 = 10 \text{ nF}$, and $U_0 = 10 \text{ kV}$. The switch has been opened for a long time.

Results from MATLAB

Fourier Analysis

Example

Given a signal

$$g(t) = \sin(200 \pi t) + \sin(400 \pi t)$$

Generate and plot 512 points of g(t). Assume a sampling rate of 1200 Hz. Find the power spectrum of g(t).

Results from MATLAB

